Муниципальное общеобразовательное учреждение «Средняя общеобразовательная школа» п. Аджером

Согласована Зам/Директора по УР

И Михайлова Т.Н.

Утверждена

Директор школы Сау Казакова Г.И.

Приказ № 72 от

«01» 09 M 2018 г.

РАБОЧАЯ ПРОГРАММА ЭЛЕКТИВНОГО КУРСА

«АСТРОНОМИЯ»

СРЕДНЕЕ ОБЩЕЕ ОБРАЗОВАНИЕ

Срок реализации - 1,5 года

Павловой Марией Михайловной, учителем математики

п. Аджером

ПОЯСНИТЕЛЬНАЯ ЗАПИСКА

Рабочая программа разработана применительно к учебной программе по астрономии для общеобразовательных учреждений по учебнику Чаругин В.М. Астрономия 10 – 11 класс (базовый уровень), М. Просвещение 2018.

Для преподавания в 10-ом классе в 2018-2019уч году во втором полугодии -1 час, в 11-ом классе в 2018-2019уч.году — 1 час.

Астрономия в школе - это курс, который, завершая физикоматематическое образование выпускников средней школы, знакомит их с современными представлениями о строении и эволюции Вселенной и способствует формированию научного мировоззрения. В настоящее время важнейшими задачами астрономии являются формирование представлений о единстве физических законов, действующих на Земле и в безграничной Вселенной, о непрерывно происходящей эволюции нашей планеты, всех космических тел и их систем, а также самой Вселенной. Астрономия реализуется за счет школьного компонента. Изучение курса рассчитано на 35 часов. При планировании 1 час в неделю.

Предметные результаты

Планируемые результаты освоения учебного предмета по итогам обучения в 10–11 классах:

• получить представления о структуре и масштабах Вселенной и месте человека в ней; узнать о средствах, которые используют астрономы, чтобы заглянуть в самые удалённые уголки Вселенной и не только увидеть небесные тела в недоступных с Земли диапазонах длин волн электромагнитного излучения, но и узнать о новых каналах получения информации о небесных телах с помощью нейтринных и гравитационноволновых телескопов.

- узнать о наблюдаемом сложном движении планет, Луны и Солнца, их интерпретации. Какую роль играли наблюдения затмений Луны и Солнца в жизни общества и история их научного объяснения. Как на основе астрономических явлений люди научились измерять время и вести календарь.
- узнать, как благодаря развитию астрономии люди перешли от представления геоцентрической системы мира к революционным представлениям гелиоцентрической системы мира. Как на основе последней были открыты законы, управляющие движением планет, и позднее, закон всемирного тяготения.
- на примере использования закона всемирного тяготения получить представления о космических скоростях, на основе которых рассчитываются траектории полётов космических аппаратов к планетам. Узнать, как проявляет себя всемирное тяготение на явлениях в системе Земля—Луна, и эволюцию этой системы в будущем.
- узнать о современном представлении, о строении Солнечной системы, о строении Земли как планеты и природе парникового эффекта, о свойствах планет земной группы и планет-гигантов и об исследованиях астероидов, комет, метеороидов и нового класса небесных тел карликовых планет.
- получить представление о методах астрофизических исследований и законах физиких, которые используются для изучения физически свойств небесных тел.
- узнать природу Солнца и его активности, как солнечная активность влияет на климат и биосферу Земли, как на основе законов физики можно рассчитать внутреннее строение Солнца и как наблюдения за потоками нейтрино от Солнца помогли заглянуть в центр Солнца и узнать о термоядерном источнике энергии.
- узнать, как определяют основные характеристики звёзд и их взаимосвязь между собой, о внутреннем строении звёзд и источниках их

энергии; о необычности свойств звёзд белых карликов, нейтронных звёзд и чёрных дыр. Узнать, как рождаются, живут и умирают звёзды.

- узнать, как по наблюдениям пульсирующих звёзд цефеид определять расстояния до других галактик, как астрономы по наблюдениям двойных и кратных звёзд определяют их массы.
- Получить представления о взрывах новых и сверхновых звёзд и узнать как в звёздах образуются тяжёлые химические элементы.
- Узнать, как устроена наша Галактика Млечный Путь, как распределены в ней рассеянные и шаровые звёздные скопления и облака межзвёздного газа и пыли. Как с помощью наблюдений в инфракрасных лучах удалось проникнуть через толщу межзвёздного газа и пыли в центр Галактики, увидеть движение звёзд в нём вокруг сверхмассивной чёрной дыры.
- Получить представление о различных типах галактик, узнать о проявлениях активности галактик и квазаров, распределении галактик в пространстве и формировании скоплений и ячеистой структуры их распределения.
- Узнать о строении и эволюции уникального объекта Вселенной в целом. Проследить за развитием представлений о конечности и бесконечности Вселенной, о фундаментальных парадоксах, связанных с ними.
- Понять, как из наблюдаемого красного смещения в спектрах далёких галактик пришли к выводу о нестационарности, расширении Вселенной, и, что в прошлом она была не только плотной, но и горячей и, что наблюдаемое реликтовое излучение подтверждает этот важный вывод современной космологии.
- Узнать, как открыли ускоренное расширение Вселенной и его связью с тёмной энергией и всемирной силой отталкивания, противостоящей всемирной силе тяготения.

- Узнать об открытии экзопланет планет около других звёзд и современном состоянии проблемы поиска внеземных цивилизаций и связи с ними.
- Научиться проводить простейшие астрономические наблюдения, ориентироваться среди ярких звёзд и созвездий, измерять высоты звёзд и Солнца, определять астрономическими методами время, широту и долготу места наблюдений, измерять диаметр Солнца и измерять солнечную активность и её зависимость от времени.

• СОДЕРЖАНИЕ

Введение в астрономию

Строение и масштабы Вселенной, и современные наблюдения.

Какие тела заполняют Вселенную. Каковы их характерные размеры и расстояния между ними. Какие физические условия встречаются в них. Вселенная расширяется. Где и как работают самые крупные оптические телескопы. Как астрономы исследуют гамма-излучение Вселенной. Что увидели гравитационно-волновые и нейтринные телескопы.

Астрометрия

Звёздное небо и видимое движение небесных светил

Какие звёзды входят в созвездия Ориона и Лебедя. Солнце движется по эклиптике. Планеты совершают петлеобразное движение. Небесные координаты. Что такое небесный экватор и небесный меридиан. Как строят экваториальную систему небесных координат. Как строят горизонтальную систему небесных координат. Видимое движение планет и Солнца. Петлеобразное движение планет, попятное и прямое движение планет. Эклиптика, зодиакальные созвездия. Неравномерное движение Солнца по эклиптике.

Движение Луны и затмения Фазы Луны и синодический месяц, условия наступления солнечного и лунного затмений. Почему происходят солнечные затмения. Сарос и предсказания затмений. Время и календарь Звёздное и солнечное время, звёздный и тропический год. Устройство лунного и солнечного календаря, проблемы их согласования Юлианский и григорианский календари.

Небесная механика

Гелиоцентрическая система мира

Представления о строении Солнечной системы в античные времена ив средневековье. Гелиоцентрическая система мира, доказательство вращения Земли вокруг Солнца. Параллакс звёзд и определение расстояния до них, парсек.

Законы Кеплера

Открытие И.Кеплером законов движения планет. Открытие закона Всемирного тяготения и обобщённые законы Кеплера. Определение масс небесных тел.

Космические скорости

Расчёты первой и второй космической скорости и их физический смысл. Полёт Ю.А. Гагарина вокруг Земли по круговой орбите.

Межпланетные перелёты

Понятие оптимальной траектории полёта к планете. Время полёта к планете и даты стартов.

Луна и её влияние на Землю

Лунный рельеф и его природа. Приливное взаимодействие между Луной и Землёй. Удаление Луны от Земли и замедление вращения Земли. Прецессия земной оси и предварение равноденствий.

Строение солнечной системы

Современные представления о Солнечной системе.

Состав Солнечной системы. Планеты земной группы и планетыгиганты, их принципиальные различия. Облако комет Оорта и Пояс Койпера. Размеры тел солнечной системы.

Планета Земля

Форма и размеры Земли. Внутреннее строение Земли. Роль парникового эффекта в формировании климата Земли.

Планеты земной группы

Исследования Меркурия, Венеры и Марса, их схожесть с Землёй. Как парниковый эффект греет поверхность Земли и перегревает атмосферу Венеры. Есть ли жизнь на Марсе. Эволюция орбит спутников Марса Фобоса и Деймоса.

Планеты-гиганты

Физические свойства Юпитера, Сатурна, Урана и Нептуна. Вулканическая деятельность на спутнике Юпитера Ио. Природа колец вокруг планет-гигантов.

Планеты-карлики и их свойства.

Малые тела Солнечной системы

Природа и движение астероидов. Специфика движения групп астероидов Троянцев и Греков. Природа и движение комет. Пояс Койпера и Облако комет Оорта. Природа метеоров и метеоритов.

Метеоры и метеориты

Природа падающих звёзд, метеорные потоки и их радианты. Связь между метеорными потоками и кометами. Природа каменных и железных метеоритов. Природа метеоритных кратеров.

Практическая астрофизика и физика Солнца

Методы астрофизических исследований

Устройство и характеристики телескопов рефракторов и рефлекторов. Устройство радиотелескопов, радиоинтерферометры.

Солние

Основные характеристики Солнца. Определение массы, температуры и химического состава Солнца. Строение солнечной атмосферы. Солнечная активность и её влияние на Землю и биосферу.

Внутреннее строение Солнца

Теоретический расчёт температуры в центре Солнца. Ядерный источник энергии и термоядерные реакции синтеза гелия из водорода, перенос энергии из центра Солнца наружу, конвективная зона. Нейтринный телескоп и наблюдения потока нейтрино от Солнца.

Звёзды

Основные характеристики звёзд

Определение основных характеристик звёзд: массы, светимости, температуры и химического состава. Спектральная классификация звёзд и её

физические основы. Диаграмма «спектральный класс» — светимость звёзд, связь между массой и светимостью звёзд.

Внутреннее строение звёзд

Строение звезды главной последовательности. Строение звёзд красных гигантов и сверхгигантов.

Белые карлики, нейтронные звёзды, пульсары и чёрные дыры Строение звёзд белых карликов и предел на их массу — предел Чандрасекара. Пульсары и нейтронные звёзды. Природа чёрных дыр и их параметры.

Двойные, кратные и переменные звёзды

Наблюдения двойных и кратных звёзд. Затменно-переменные звёзды. Определение масс двойных звёзд. Пульсирующие переменные звёзды, кривые изменения блеска цефеид. Зависимость между светимостью и периодом пульсаций у цефеид. Цефеиды — маяки во Вселенной, по которым определяют расстояния до далёких скоплений и галактик.

Новые и сверхновые звёзды Характеристики вспышек новых звёзд. Связь новых звёзд с тесными двойными системами, содержащими звезду белый карлик. Перетекание вещества и ядерный взрыв на поверхности белого карлика. Как взрываются сверхновые звёзды. Характеристики вспышек сверхновых звёзд. Гравитационный коллапс белого карлика с массой Чандрасекара в составе тесной двойной звезды — вспышка сверхновой первого типа. Взрыв массивной звезды в конце своей эволюции — взрыв сверхновой второго типа. Наблюдение остатков сверхновых звёзд. Эволюция звёзд: рождение, жизнь и смерть звёзд Расчёт продолжительности звёзд разной главной ИНЕИЖ массы на последовательности. Переход в красные гиганты и сверхгиганты после исчерпания водорода. Спокойная эволюция мало массивных звёзд, и гравитационный коллапс и взрыв с образованием нейтронной звезды или чёрной дыры массивной звезды. Определение возраста звёздных скоплений и отдельных звёзд и проверка теории эволюции

Млечный Путь

Газ и пыль в Галактике

Как образуются отражательные туманности. Почему светятся диффузные туманности. Как концентрируются газовые и пылевые туманности в Галактике.

Рассеянные и шаровые звёздные скопления

Наблюдаемые свойства рассеянных звёздных скоплений. Наблюдаемые свойства шаровых звёздных скоплений. Распределение и характер движения скоплений в Галактике. Распределение звёзд, скоплений, газа и пыли в Галактике. Сверхмассивная чёрная дыра в центре Галактики и космические лучи. Инфракрасные наблюдения движения звёзд в центре Галактики и обнаружение в центре Галактики сверхмассивной черной дыры.

Расчёт параметров сверхмассивной чёрной дыры. Наблюдения космических лучей и их связь со взрывами сверхновых звёзд.

<u>Галактики</u>

Как классифицировали галактики по форме и камертонная диаграмма Хаббла. Свойства спиральных, эллиптических и неправильных галактик. Красное смещение в спектрах галактик и определение расстояния до них.

Закон Хаббла

Вращение галактик и тёмная материя в них.

Активные галактики и квазары

Природа активности галактик, радиогалактики и взаимодействующие галактики. Необычные свойства квазаров, их связь с ядрами галактики активностью чёрных дыр в них.

Скопления галактик

Наблюдаемые свойства скоплений галактик, рентгеновское излучение, температура и масса межгалактического газа, необходимость существования тёмной материи в скоплениях галактик. Оценка массы тёмной материи в

скоплениях. Ячеистая структура распределения галактики скоплений галактик.

Строение и эволюция Вселенной

Конечность и бесконечность Вселенной — парадоксы классической космологии.

Закон всемирного тяготения и представления о конечности и бесконечности Вселенной. Фотометрический парадокс и противоречия между классическими представлениями о строении Вселенной и наблюдениями. Необходимость привлечения общей теории относительности для построения модели Вселенной. Связь между геометрических свойств пространства Вселенной с распределением и движением материи в ней.

Расширяющаяся Вселенная

средней плотности законом материи \mathbf{c} расширения геометрическими свойствами Вселенной. Евклидова неевклидова геометрия Вселенной. Определение радиуса и возраста Вселенной. Модель «горячей Вселенной» и реликтовое излучения. Образование химических элементов во Вселенной. Обилие гелия во Вселенной и необходимость образования его на ранних этапах эволюции Вселенной. Необходимость не только высокой плотности вещества, но и его высокой температуры на ранних этапах эволюции Вселенной. Реликтовое излучение — излучение, которое осталось во Вселенной от горячего и сверхплотного состояния материи на ранних этапах жизни Вселенной. Наблюдаемые свойства реликтового излучения. Почему необходимо привлечение общей теории относительности для построения модели Вселенной.

Современные проблемы астрономии Ускоренное расширение Вселенной и тёмная энергия

Наблюдения сверхновых звёзд I типа в далёких галактиках и открытие ускоренного расширения Вселенной. Открытие силы всемирного отталкивания. Тёмная энергия увеличивает массу Вселенной по мере её расширения. Природа силы Всемирного отталкивания.

Обнаружение планет возле других звёзд.

Наблюдения за движением звёзд и определения масс невидимых спутников звёзд, возмущающих их прямолинейное движение. Методы обнаружения экзопланет. Оценка условий на поверхностях экзопланет. Поиск экзопланет с комфортными условиями для жизни на них.

Поиски жизни и разума во Вселенной

Развитие представлений о возникновении и существовании жизни во Вселенной. Современные оценки количества высоко развитых цивилизаций в Галактике. Попытки обнаружения и посылки сигналов внеземным цивилизациям.

Примерный перечень наблюдений

Наблюдения невооруженным глазом

- 1. Основные созвездия и наиболее яркие звезды осеннего, зимнего и весеннего неба. Изменение их положения с течением времени.
- 2. Движение Луны и смена ее фаз.

Наблюдения в телескоп

- 1. Рельеф Луны.
- 2. Фазы Венеры.
- 3. Mapc.
- 4. Юпитер и его спутники.
- 5. Сатурн, его кольца и спутники.
- 6. Солнечные пятна (на экране).
- 7. Двойные звезды.
- 8. Звездные скопления (Плеяды, Гиады).
- 9. Большая туманность Ориона.
- 10. Туманность Андромеды.

ТРЕБОВАНИЯ К УРОВНЮ ПОДГОТОВКИ ВЫПУСКНИКОВ

В результате изучения астрономии на базовом уровне ученик должен

знать/понимать

• *смысл понятий*: геоцентрическая и гелиоцентрическая система, видимая звездная величина, созвездие, противостояния и соединения планет, ко-

мета, астероид, метеор, метеорит, метеороид, планта, спутник, звезда, Солнечная система, Галактика,Вселенная, всемирное и поясное время, внесолнечная планета (экзопланета), спектральная классификация звезд, параллакс, реликтовое излучение,Большой Взрыв, черная дыра;

- *смысл физических величин*: парсек, световой год, астрономическая единица, звездная величина;
- смысл физического закона Хаббла;
- основные этапы освоения космического пространства;
- гипотезы происхождения Солнечной системы;
- основные характеристики и строение Солниа, солнечной атмосферы;
- размеры Галактики, положение и период обращения Солнца относительно центраГалактики;

уметь

• *приводить примеры*: роли астрономии в развитии цивилизации, использования методов исследований в астрономии, различных лиапазонов

электромагнитных излучений для получения информации об объектах Вселенной, получения астрономической информации с помощью космических

аппаратов и спектрального анализа, влияния солнечной активности на Землю;

• описывать и объяснять: различия календарей, условия

характеризовать особенности методов познания астрономии, основные элементы и свойства планет Солнечной системы, методы определения расстояний и линейных размеров небесных тел, возможные пути эволюции звезд различной массы;

• *находить на небе* основные созвездия Северного полушария, в том числе: Большая Медведица, Малая Медведица, Волопас, Лебедь, Кассиопея,

Орион; самые яркие звезды, в том числе: Полярная звезда, Арктур, Вега, Капелла, Сириус, Бетельгейзе; *использовать* компьютерные приложения

для определения положения Солнца, Луны и звезд на любую дату и время суток для данного населенного пункта; • *использовать* приобретенные знания и умения в практической деятельности и повседневной

жизни для понимания взаимосвязи астрономии с другими науками, в основе которых лежат знания по астрономии; отделения ее от лженаук; оценива-

ния информации, содержащейся в сообщениях СМИ, Интернете, научно-популярных статьях.

наступления солнечных и лунных затмений, фазы Луны, суточные	
движения светил, при-	
чины возникновения приливов и отливов; принцип действия	
оптического телескопа, взаимосвязь физико-химических	
характеристик звезд с использова-	
нием диаграммы «цвет — светимость», физические причины,	
определяющие равновесие звезд, источник энергии звезд и	
происхождение химических	
элементов, красное смещение с помощью эффекта Доплера;	

1.1 Контроль уровня обученности.

Зачет по предмету выставляется при 100% посещение уроков, незачет ставится при пропуске 2 и более уроков без уважительной причины.

1.2

1.3 Учебно-методические пособия

Для учителя:

- 1. Чаругин В.М. Астрономия 10-11 класс (базовый уровень), М. Просвещение 2018.
- 2. Программы для общеобразовательных учреждений. Физика. Астрономия. 7-11 класс, В. А. Коровин, В. А. Орлов. М.: Дрофа, 2010 г.;
- 3. Оськина В. Т. Астрономия. 11 класс: поурочные планы по учебнику Е. П. Левитана. Волгоград: Учитель, 2006 г.
- 4. Демченко Е. А. Астрономия 11 класс: поурочные планы по учебнику Е.П. Левитана. Волгоград, Учитель 2003 г.
- 5. Воронцов-Вельяминов Б. А. Методика преподавания астрономии в средней школе. Пособие для учителя, М. Просвещение 1985.

Для учащихся

1. Чаругин В.М. Астрономия 10 – 11 класс (базовый уровень), М. Просвещение 2018.