Муниципальное общеобразовательное учреждение «Средняя общеобразовательная школа» п. Аджером

Согласовано:	Утверждаю
Заместитель директора по УР	Директор школы жаз
Muramoba	/Казакова Г. И ./
Михайлова Т.Н.	« <u>1</u> » <u>сентября 2015 года</u>

Рабочая программа факультативного курса «Методы решения физических задач» среднего общего образования

Срок реализации программы – 1 год

Составитель программы: Павлова Мария Михайловна

Аджером
2015 год

Пояснительная записка

Рабочая программа для 10 класса составлена в соответствии с федеральным компонентом государственного стандарта основного общего образования по физике, утвержденным в 2004 году.

Актуальность создания программы.

Цель элективной технологии обучения предполагает:

- Определение предметно-содержательного наполнения обучения с предоставлением учащимися выбора на основе принципа вариативности;
- Обучение каждого выпускника на уровне его возможностей и способностей.

Программа факультативного курса 10 класса в объёме 36 часов составлена применительно к программе под редакцией Г.Я.Мякишева, Б.Б.Буховцева в соответствии с концепцией углублённого и профильного обучения учащихся. В программе «Метолы решения физических задач» решение физических задач неотъемлемая часть факультативных занятий, с их помощью создаются и решаются проблемные ситуации, сообщаются знания о конкретных объектах и явлениях, развиваются практические и интеллектуальные умения, также такие качества, как целеустремленность, аккуратность, внимательность, способность к саморазвитию, самореализации творческих способностей. Подготовка к семинарам, конференциям, написание работ исследовательского характера, повышают интерес к физике, положительно влияют на осознанный выбор дальнейшего жизненного пути.

Новизна программы: в непрерывности и последовательности углубленного изучения учебного материала, в преемственности изучения разделов курса физики с опорой на изученное в предыдущие годы. При проведении занятий используются интерактивные технологии. В изложение материала органически включаются выступления обучающихся, семинары, практикумы, защита курсовых проектов.

Методологические обоснования программы.

Разработка данной программы есть творческая переработка, структурирование имеющегося материала, адаптированного применительно к его углублённому изучению, а также к дальнейшему продолжению обучения в ВУЗах физической направленности.

Основной принцип определения содержания факультативных занятий в отборе доступного разноуровневого учебного материала с опорой на фундаментальные законы в современном толковании не только традиционных вопросов школьного курса. Некоторые разделы в программе перестраиваются на основе использования принципа интеграции, что помогает увидеть новые связи в знаниях, целостно воспринимать учебный материал.

Содержание программы предлагается углубленное изучение отдельных тем в форме семинаров, презентаций, углубление теоретического материала по конкретному разделу, затем выделяются характерные для данного раздела (темы) задачи, на которых отрабатываются алгоритмы задач и приемы их решения.

Особенностью программы является ее сквозной характер, непрерывность изучения тем по разделам.

Целью данной программы является создание условий для развития, саморазвития творческих способностей учащихся их интересов и подготовки к продолжению образования с учетом личностного потенциала каждого учащегося.

Задачи:

- Развитие общеучебных мыслительных умений и навыков для решения задач творческого и исследовательского характера;
- Развитие у учащихся потребности и умения самостоятельно приобретать и пополнять свои знания;
- Совершенствование полученных знаний в основном курсе знаний и умение применять их в конкретных, проблемных ситуациях;

• Активизация познавательного интереса к физике и технике, профессиональное самоопределение.

Структура программы соответствует Положению, принятому в МОУ «СОШ» п.Аджером и включает в себя разделы:

- пояснительную записку;
- тематическое планирование;
- календарно тематическое планирование;
- требования к уровню подготовки учащихся;
- список литературы.

Организация проведения контроля учащихся

Уровень достижений учащихся определяется в результате:

- -наблюдения активности на практикумах;
- -беседы с учащимися;
- -анализа сущности физических процессов.

Тематическое планирование

10 класс

№ п/п	Название темы/раздела	Общее количество часов по	Количество	
		теме	теория	практических работ
1	Формирование общих приемов при решении задач раздела «Механики»	7	6	1
2	Экспериментальные и графические задачи молекулярной физики	6	5	1
3	Электродинамика	6	5	1
4	Электромагнитные явления	5	4	1
5	Колебания и волны	5	4	1
6	Оптические явления	7	6	1
Bcei	го:		30	6
Ито	го:			36

Календарно – тематическое планирование

рно – тематическое планирование			
№ п/п	Сроки проведения	Тема урока/раздела	
1 4			
1. Фо	рмирование оощих прис	емов при решении задач раздела «Механики»; 7 часов	
1.1		Кинематические характеристики движения. Измерение	
		скорости тел. Явление Доплера для определения	
		скорости быстро движущихся тел. Кинематические	
		характеристики движения тел в различных системах	
		отсчета.	
1.2		Нахождение координат и скорости тела при движении	
1.2		по вертикали, под углом к горизонту, брошенного с	
		некоторой высоты горизонтально. Движение тел под	
		действием разных сил. Сила тяжести, масса, вес тела	
1.3		Движение связанных тел	
		Зависимость силы трения от угла наклона плоскости с	
		горизонтом	
1.4		Равномерное и равнопеременное вращательное	
		движение. Основная задача механики вращательного	
		движения. Гироскоп – основа управления движением	
		самолетов и кораблей.	
1.5		Упругий и неупругий удар. Условия равновесия. Расчёт	
		скоростей шаров при их упругом и неупругом	
		соударениях	
1.6		Зависимость потенциальной, кинетической и полной	
1.0		энергии от высоты. Расчётные задачи с опорой на	
		дополнительные знания, полученные на	
		факультативных занятиях; расчёт расхода топлива	
		ракетой при её старте.	
1.7		Творческая работа: создание тестов.	
2. Э	 Ркспериментальные и гј	 рафические задачи молекулярной физики; 6 часов.	
2.0	1	T	
2.8		Температура, плотность и внутренняя энергия с точки	
		зрения МКТ. Газовые законы как следствие уравнения	
		газового состояния.	
2.9		Нахождение связи между макро и микро параметрами	
		газа. Газовые законы и графики изопроцессов	
		Применение газовых законов в технике.	
2.10		Свойства паров. Свойства жидкостей. Аморфные тела.	
		Анизотропия кристаллов	
		-	

2.11	Первое начало термодинамики	
	Определение количества теплоты, переданного системе,	
	с учетом постоянства параметров P.V.T	
	Расчет количества теплоты, переданной жидким и	
	твердым телам. Уравнение теплового баланса. Чтение	
	графиков процессов, происходивших с газом,	
	зависимость $P(V)$, $P(T)$, $P(M)$ $P(\rho)$	
2.12	Расчет количества теплоты, переданной жидким и	
	твердым телам. Уравнение теплового баланса. Расчет	
	КПД реального теплового двигателя. Расчет расхода	
	топлива конкретных автомобилей	
	КПД идеальной тепловой машины	
2.13	Творческая работа: защита проектов.	
3. Электродинамика; 6	насов.	
3.14	Электрическое поле и его свойства.	
	Эквипотенциальные поверхности точечного заряда,	
	прямого проводника с током и заряженной плоскости,	
	однородного и неоднородного полей. Энергия	
0.17	электрического поля.	
3.15	Конденсаторы. Соединения конденсаторов. Условия	
	существования тока. Законы тока. Законы Кирхгоффа.	
3.16	Электрический ток в различных средах. Электрический	
0.15	ток в жидкостях.	
3.17	Закон Фарадея. Применение электролиза в технике.	
3.18	Электронные пучки и их свойства. Применение.	
3.19	Творческая работа: решение задачи несколькими	
	способами.	
4.Электромагнитные яв	ления; 5 часов.	
4.20	Магнитное поле. Магнитные свойства вещества.	
	Электромагнитная индукция и её законы. Магнитное	
	поле в вакууме. Магнитная постоянная вакуума.	
4.21	Измерение магнитного поля Земли. Магнитные полюса	
	Земли. Движение заряженной частицы в магнитном	
	поле.	
4.22	Магнитный поток. Исследование зависимости	
	магнитных свойств вещества от температуры.	
4.23	Принцип действия машин и механизмов, основанных на	
	законах ЭМИ. Вихревое электрическое поле. Бетатрон –	
	ускоритель элементарных частиц.	
4.24	Самоиндукция. Индуктивность. Энергия магнитного	
	поля тока.	
5.Колебания и волны; 5 часов.		

5.25	Колебания механические и электромагнитные.
	Вынужденные электромагнитные колебания.
	Переменный ток.
5.26	Волновое движение. Динамика электромагнитных
	колебаний. Генерирование энергии. Трансформатор с
	нагрузкой.
5.27	Характеристики и свойства волн в сравнении:
	механических и электромагнитных.
5.28	Энергия и интенсивность электромагнитных волн,
	излучение в пространство.
5.29	Самостоятельная работа: «Колебания и волны».
6.Оптические яв.	ления; 7 часов.
6.30	Волновая оптика. Геометрическая оптика.
	Корпускулярно-волновой дуализм света.
6.31	Квантовая оптика.
	Комплексные задачи.
6.32	Законы преломления в треугольной призме и
	плоскопараллельной пластине.
6.33	Оптические приборы: лупа, фотоаппарат, очки,
	проекционная аппаратура (Защита рефератов). Линзы.
	Формула линзы.
6.34	Излучения и спектры. Фотоэффект, законы и
	применение. Уравнение Эйнштейна для фотоэффекта.
6.35	Фотоны, масса, импульс, энергия. Свойства фотонов
	при переходе из одной среды в другую.
6.36	Творческая работа: «Подводя итог »
1	

Требования к уровню подготовки учащихся:

1. Формирование общих приемов при решении задач раздела «Механики»

Знать: теоретические основы кинематики, динамики, основ вращательного движения, законов сохранения импульса и энергии.

Уметь: применять знания законов, теорий в решении задач, выполнять задания практикума раздела «Механика».

Применять: приобретённые знания и умения для решения расчётных, качественных. графических задач. Использовать знания при подготовке к ЕГЭ.

2. Экспериментальные и графические задачи молекулярной физики

Знать: теоретические основы молекулярно-кинетической теории, основы термодинамики, свойства твёрдых, жидких, газообразных тел их взаимное превращение. Принцип работы тепловых двигателей.

Уметь: применять знания законов, теорий в решении задач .выполнять задания практикума раздела «Термодинамика и М.К.Т».

Применять: приобретенные знания и умения для решения расчетных, качественных. графических задач, а так же для выполнения курсовых и исследовательских работ. Использовать знания при подготовке к ЕГЭ.

3. Электродинамика

Знать: теоретические основы электромагнетизма, законы постоянного тока и закономерности протекания токов в различных средах.

Уметь: применять знания законов, теорий в решении задач, выполнять задания практикума раздела «Электродинамика»

Применять: приобретенные знания и умения для решения расчетных, качественных. графических задач, а так же для выполнения курсовых и исследовательских работ. Использовать знания при подготовке к ЭГЭ.

4. Электромагнитные явления. Колебания и волны.

Знать: теоретические основы электромагнетизма, законы переменного тока, законы геометрической, волновой, квантовой оптики.

Уметь: применять знания законов, теорий в решении задач, выполнять задания практикума раздела «Электромагнетизм». «Колебания и волны»

Применять: приобретенные знания и умения для решения расчетных, качественных. графических задач, а так же для выполнения курсовых и исследовательских работ. Использовать знания при подготовке к ЭГЭ.

КРИТЕРИИ И НОРМЫ ОТМЕТОЧНОГО ОЦЕНИВАНИЯ ЗНАНИЙ ОБУЧАЮЩИХСЯ ПО ПРЕДМЕТУ

«Физика»

Критерии отметочного оценивания устных ответов:

Отметка «5» ставится в том случае, если учащийся показывает верное понимание физической сущности рассматриваемых явлений и закономерностей, законов и теорий, дает точное определение и истолкование основных понятий, законов, теорий, а также правильное определение физических величин, их единиц и способов измерения; правильно выполняет чертежи, схемы и графики; строит ответ по собственному плану, сопровождает рассказ новыми примерами, умеет применить знания в новой ситуации при выполнении практических заданий; может установить связь между изучаемым и ранее изученным материалом по курсу физики, а также с материалом, усвоенным при изучении других предметов.

Отметка «4» ставится, если ответ ученика удовлетворяет основным требованиям к ответу на отметку «5», но дан без использования собственного плана, новых примеров, без применения знаний в новой ситуации, без использования связей с ранее изученным материалом и материалом, усвоенным при изучении других предметов; если учащийся допустил одну ошибку или не более двух недочетов и может их исправить самостоятельно или с небольшой помощью учителя.

Отметка «З» ставится, если учащийся правильно понимает физическую сущность рассматриваемых явлений и закономерностей, но в ответе имеются отдельные пробелы в усвоении вопросов курса физики, не препятствующие дальнейшему усвоению программного материала; умеет применять полученные знания при решении простых задач с использованием готовых формул, но затрудняется при решении задач, требующих преобразования некоторых формул; допустил не более одной грубой ошибки и двух недочетов, не более одной грубой и одной негрубой ошибки, не более двухтрех негрубых ошибок, одной негрубой ошибки и трех недочетов; допустил четыре или пять недочетов.

Отметка «2» ставится, если учащийся не овладел основными знаниями и умениями в соответствии с требованиями программы и допустил больше ошибок и недочетов, чем необходимо для отметки «3».

Отметка «1» ставится, если учащийся обнаруживает полное незнание и непонимание материала.

Критерии отметочного оценивания письменных домашних, самостоятельных и контрольных работ:

Отметка «5» ставится за работу, выполненную полностью без ошибок и недочетов.

Отметка «4» ставится за работу, выполненную полностью, но при наличии в ней не более одной негрубой ошибки и одного недочета; не более трех недочетов.

Отметка «**3**» ставится, если ученик правильно выполнил не менее 2/3 всей работы или допустил не более одной грубой ошибки и двух недочетов; не более одной грубой и одной негрубой ошибки; не более трех негрубых ошибок; одной негрубой ошибки и трех недочетов; при наличии четырех-пяти недочетов.

Отметка «**2**» ставится, если число ошибок и недочетов превысило норму для оценки «**3**» или правильно выполнено менее 2/3 всей работы.

Отметка «1» ставится, если учащийся не приступал к выполнению работы, или не выполнил ни одного задания правильно

Критерии отметочного оценивания тестовых работ:

Отметка «5» ставится, если правильно выполнено 90-100% всей работы Отметка «4» ставится, если правильно выполнено 75-89% всей работы Отметка «3» ставится, если правильно выполнено 51-74% всей работы Отметка «2» ставится, если правильно выполнено менее 50% всей работы Отметка «1» ставится, если учащийся не приступал к выполнению работы

Критерии отметочного оценивания практических и лабораторных работ:

Отметка «5» ставится, если учащийся выполняет работу в полном объеме с соблюдением необходимой последовательности про ведения опытов и измерений; самостоятельно и рационально монтирует необходимое оборудование; все опыты проводит в условиях и режимах, обеспечивающих получение правильных результатов и выводов; соблюдает требования правил безопасности труда; правильно и аккуратно выполняет все записи, таблицы, рисунки, чертежи, графики, вычисления; правильно выполняет анализ погрешностей.

Отметка «**4**» ставится, если выполнены требования к отметке «5», но было допущено два-три недочета; не более одной негрубой ошибки и одного недочета.

Отметка «**3**» ставится, если работа выполнена не полностью, но объем выполненной части таков, что позволяет получить правильный результат и вывод; если в ходе проведения опыта и измерения были допущены ошибки.

Отметка «2» ставится, если работа выполнена не полостью и объем выполненной части работы не позволяет сделать правильных выводов; если опыты, измерения, вычисления, наблюдения проводились неправильно.

Критерии отметочного оценивания докладов:

Отметка «5» - тема изложена логично, без существенных ошибок, мысли выражены доступным языком. В работе отмечаются знания учеником темы, свободное владение основными вопросами, способность определить точку зрения по спорным вопросам или выразить отношение в точке зрения какоголибо автора, а также умение работать с литературой, правильно отбирать материал. Выводы автора логичны и убедительны.

Отметка «4» - в изложении материала допущены незначительные пробелы и ошибки, изложение, недостаточно систематизированное и последовательное, выводы доказательны, но содержат отдельные неточности.

Отметка «**3**» - изложение темы недостаточно самостоятельное, несистематизированное, содержит существенные ошибки, в том числе в выводах, аргументация слабая, умения не проявлены, есть недостатки в оформлении реферата.

Критерии отметочного оценивания сообщении:

Отметка «5» - тема изложена логично, без существенных ошибок, мысли выражены доступным языком. Ученик свободно владеет основными вопросами, правильно отбирает материал. Выводы логичны и убедительны. Составляет краткий план в тетради.

Отметка «4» - в изложении материала допущены незначительные пробелы и ошибки, выводы содержат отдельные неточности. План в тетради имеется, ученик часто пользуется записями.

Отметка «3» - изложение темы недостаточно самостоятельно, содержит ошибки. Ученик читает по конспекту в тетради.

Общая классификация ошибок.

Ошибка считается грубой, если учащийся:

- не знает определений основных понятий, законов, правил, основных положений теории, формул, общепринятых символов обозначения физических величин, их единиц;
- не умеет выделить в ответе главное;
- не умеет применять знания для решения задач и объяснения физических явлений; неправильно формулирует вопросы задачи или неверно объясняет ход ее решения; не знает приемов решения задач, аналогичных ранее решенным в классе, неправильно понимает условие задачи или истолковывает решение;
- не умеет читать и строить графики и принципиальные схемы;

- не умеет подготовить к работе установку или лабораторное оборудование, провести опыт, необходимые расчеты или использовать полученные данные для выводов;
- не умеет определять показание измерительного прибора;
- нарушает требования правил безопасности труда при выполнении эксперимента.

К негрубым ошибкам относятся:

- неточности формулировок, определений, понятий, законов, теорий, вызванные неполнотой охвата основных признаков определяемого понятия, ошибки, вызванные несоблюдением условий проведения опыта или измерений;
- ошибки в условных обозначениях на принципиальных схемах, неточности чертежей, графиков, схем;
- пропуск или неточное написание наименований единиц физических величин;
- нерациональный выбор хода решения.

Недочетами считаются:

- нерациональные записи при вычислениях, нерациональные приемы вычислений, преобразований при решении задач;
- арифметические ошибки в вычислениях, если эти ошибки грубо не искажают реальность полученного результата;
- отдельные погрешности в формулировке вопроса или ответа;
- небрежное выполнение записей, чертежей, схем, графиков;
- орфографические и пунктуационные ошибки.

Список литературы

- Интернет ресурсы: Единая Интернет - коллекция цифровых образовательных ресурсов. - Режим доступа:
- http://school-collection.edu.ru/collection/
- Учительский портал. Режим доступа: http://www.uchportal.ru/
- Видеоуроки в сети Интернет. Режим доступа: http://videouroki.net/
- Для ЕГЭ и ИГА:
- ФИПИ. Режим доступа: http://www.fipi.ru/view/sections/229/docs/662.html
- - Режим доступа: http://alexlarin.net/ege13.html
- РИЦОКО.- Режим доступа: http://ricoko.ru/?page_id=2094
- Всероссийские дистанционные эвристические олимпиады по физике. Режим доступа: http://www.eidos.ru/olymp/fisik/index.htm
- Учебник для 11 класса общеобразовательных учреждений Г.Я Мякишев Б.Б Буховцев Москва Прсвещение 2006
- Учебник для 10 класса общеобразовательных учреждений Г.Я Мякишев Б.Б Буховцев Москва Прсвещение 2006
- Сборник задач по физике для 9-11 классов составитель Г.Н Степанова Москва Просвещение 2004
- Сборник задач по физике для 9-11 классов составитель А. П. Рымкевича Москва Дрофа 2004